965 research outputs found

    Deformation and tribology of multi-walled hollow nanoparticles

    Full text link
    Multi-walled hollow nanoparticles made from tungsten disulphide (WS2_2) show exceptional tribological performance as additives to liquid lubricants due to effective transfer of low shear strength material onto the sliding surfaces. Using a scaling approach based on continuum elasticity theory for shells and pairwise summation of van der Waals interactions, we show that van der Waals interactions cause strong adhesion to the substrate which favors release of delaminated layers onto the surfaces. For large and thin nanoparticles, van der Waals adhesion can cause considerable deformation and subsequent delamination. For the thick WS2_2 nanoparticles, deformation due to van der Waals interactions remains small and the main mechanism for delamination is pressure which in fact leads to collapse beyond a critical value. We also discuss the effect of shear flow on deformation and rolling on the substrate.Comment: Latex, 13 pages with 3 Postscript figures included, to appear in Europhysics Letter

    Mechanochemical enzymes and protein machines as hydrodynamic force dipoles: The active dimer model

    No full text
    Mechanochemically active enzymes change their shapes within every turnover cycle. Therefore, they induce circulating flows in the solvent around them and behave as oscillating hydrodynamic force dipoles. Because of non-equilibrium fluctuating flows collectively generated by the enzymes, mixing in the solution and diffusion of passive particles within it are expected to get enhanced. Here, we investigate the intensity and statistical properties of such force dipoles in the minimal active dimer model of a mechanochemical enzyme. In the framework of this model, novel estimates for hydrodynamic collective effects in solution and in lipid bilayers under rapid rotational diffusion are derived, and available experimental and computational data is examined

    High Resolution Study of Magnetic Ordering at Absolute Zero

    Get PDF
    High fidelity pressure measurements in the zero temperature limit provide a unique opportunity to study the behavior of strongly interacting, itinerant electrons with coupled spin and charge degrees of freedom. Approaching the exactitude that has become the hallmark of experiments on classical critical phenomena, we characterize the quantum critical behavior of the model, elemental antiferromagnet chromium, lightly doped with vanadium. We resolve the sharp doubling of the Hall coefficient at the quantum critical point and trace the dominating effects of quantum fluctuations up to surprisingly high temperatures.Comment: 5 pages, 4 figure

    Localization and diffusion of tracer particles in viscoelastic media with active force dipoles

    Full text link
    Optical tracking in vivo experiments reveal that diffusion of particles in biological cells is strongly enhanced in the presence of ATP and the experimental data for animal cells could previously be reproduced within a phenomenological model of a gel with myosin motors acting within it [EPL 110, 48005 (2015)]. Here, the two-fluid model of a gel is considered where active macromolecules, described as force dipoles, cyclically operate both in the elastic and the fluid components. Through coarse-graining, effective equations of motions for tracer particles displaying local deformations and local fluid flows are derived. The equation for deformation tracers coincides with the earlier phenomenological model and thus confirms it. For flow tracers, diffusion enhancement caused by active force dipoles in the fluid component, and thus due to metabolic activity, is found. The latter effect may explain why ATP-dependent diffusion enhancement could also be observed in bacteria that lack molecular motors in their skeleton or when the activity of myosin motors was chemically inhibited

    Chromium at High Pressures: Weak Coupling and Strong Fluctuations in an Itinerant Antiferromagnet

    Get PDF
    The spin- and charge-density-wave order parameters of the itinerant antiferromagnet chromium are measured directly with non-resonant x-ray diffraction as the system is driven towards its quantum critical point with high pressure using a diamond anvil cell. The exponential decrease of the spin and charge diffraction intensities with pressure confirms the harmonic scaling of spin and charge, while the evolution of the incommensurate ordering vector provides important insight into the difference between pressure and chemical doping as means of driving quantum phase transitions. Measurement of the charge density wave over more than two orders of magnitude of diffraction intensity provides the clearest demonstration to date of a weakly-coupled, BCS-like ground state. Evidence for the coexistence of this weakly-coupled ground state with high-energy excitations and pseudogap formation above the ordering temperature in chromium, the charge-ordered perovskite manganites, and the blue bronzes, among other such systems, raises fundamental questions about the distinctions between weak and strong coupling.Comment: 11 pages, 9 figures (8 in color

    Effects of an embedding bulk fluid on phase separation dynamics in a thin liquid film

    Full text link
    Using dissipative particle dynamics simulations, we study the effects of an embedding bulk fluid on the phase separation dynamics in a thin planar liquid film. The domain growth exponent is altered from 2D to 3D behavior upon the addition of a bulk fluid, even though the phase separation occurs in 2D geometry. Correlated diffusion measurements in the film show that the presence of bulk fluid changes the nature of the longitudinal coupling diffusion coefficient from logarithmic to algebraic dependence of 1/s, where s is the distance between the two particles. This result, along with the scaling exponents, suggests that the phase separation takes place through the Brownian coagulation process.Comment: 6 pages, 5 figures. Accepted for publication in Europhys. Let

    Anomalous lateral diffusion in a viscous membrane surrounded by viscoelastic media

    Full text link
    We investigate the lateral dynamics in a purely viscous lipid membrane surrounded by viscoelastic media such as polymeric solutions. We first obtain the generalized frequency-dependent mobility tensor and focus on the case when the solvent is sandwiched by hard walls. Due to the viscoelasticity of the solvent, the mean square displacement of a disk embedded in the membrane exhibits an anomalous diffusion. An useful relation which connects the mean square displacement and the solvent modulus is provided. We also calculate the cross-correlation of the particle displacements which can be applied for two-particle tracking experiments.Comment: 6 pages, 2 figure
    • …
    corecore